Source code for qlat_utils.utils

from .timer import *
from .cache import *
from .c import *
from .json import *

import math
import sys
import os
import numpy as np
import inspect
import importlib
import importlib.util

def getenv(*names, default=None):
    assert len(names) > 0
    for name in names:
        val = os.getenv(name)
        if val is not None:
            displayln_info(0, f"{name}='{val}'")
            return val
    val = default
    displayln_info(0, f"{names[0]}='{val}' (default)")
    return val

def get_arg(option, default=None, *, argv=None, is_removing_from_argv=False):
    """
    Get the `arg` of the option when it first appears.
    Remove the option and its arg if `is_removing_from_argv`.
    """
    if argv is None:
        argv = sys.argv
    i_max = len(argv) - 1
    for i in range(len(argv)):
        if argv[i] == option:
            if i == i_max:
                if is_removing_from_argv:
                    argv.pop(i)
                return ""
            else:
                arg = argv[i + 1]
                if is_removing_from_argv:
                    argv.pop(i)
                    argv.pop(i)
                return arg
    return default

def get_option(option, *, argv=None, is_removing_from_argv=False):
    """
    Return if `option` in `argv`.
    Remove the option if `is_removing_from_argv`
    """
    if argv is None:
        argv = sys.argv
    if option in argv:
        if is_removing_from_argv:
            argv.remove(option)
        return True
    else:
        return False

def show_memory_usage():
    try:
        import psutil
        rss = psutil.Process().memory_info().rss / (1024 * 1024 * 1024)
        displayln_info(f"show_memory_usage: rss = {rss:.6f} GB")
        # displayln_info_malloc_stats()
    except:
        displayln_info(f"show_memory_usage: no psutil.")

def import_file(module_name, file_path):
    """
    return the imported module
    """
    spec = importlib.util.spec_from_file_location(module_name, file_path)
    module = importlib.util.module_from_spec(spec)
    sys.modules[module_name] = module
    spec.loader.exec_module(module)
    return module

def displayln_info_malloc_stats():
    if get_id_node() == 0:
        return displayln_malloc_stats()

def lazy_call(f, *args, **kwargs):
    is_thunk = True
    ret = None
    def get():
        nonlocal ret, is_thunk
        if is_thunk:
            ret = f(*args, **kwargs)
            is_thunk = False
        return ret
    return get

[docs] @timer def get_fname(): """ Return the function name of the current function ``fname`` """ f = inspect.currentframe().f_back return f.f_code.co_name
def sqr(x): return x * x def set_zero(x): x.set_zero() def set_unit(x, coef=1.0): x.set_unit(coef) def show(x): return x.show() def unitarize(x): x.unitarize()
[docs] def get_chunk_list(total_list, *, chunk_size=None, chunk_number=None, rng_state=None): """ Split ``total_list`` into ``chunk_number`` chunks or chunks with ``chunk_size``. One (and only one) of ``chunk_size`` and ``chunk_number`` should not be ``None``. # Returns a list of chunks. Number of chunks is less or equal to ``chunk_number``. Chunk sizes are less or equal to ``chunk_size``. if rng_state is None: Do not randomly permute the list """ assert chunk_size is None or chunk_number is None assert chunk_size is not None or chunk_number is not None chunk_list = [] if rng_state is not None: assert isinstance(rng_state, RngState) total_list = random_permute(total_list, rng_state) total = len(total_list) if chunk_size is not None: assert isinstance(chunk_size, int) assert chunk_size >= 1 chunk_number = (total - 1) // chunk_size + 1 elif chunk_number is not None: assert isinstance(chunk_number, int) assert chunk_number >= 1 chunk_size = (total - 1) // chunk_number + 1 for i in range(chunk_number): start = min(i * chunk_size, total); stop = min(start + chunk_size, total); if stop > start: chunk_list.append(total_list[start:stop]) return chunk_list
def mk_epsilon_array(): arr = np.zeros((4, 4, 4, 4,), dtype = np.int8) def setv(i, j, k, l): setw(i, j, k, l, 1) setw(i, j, l, k, -1) def setw(i, j, k, l, val): arr[i, j, k, l] = val; arr[j, k, l, i] = -val; arr[k, l, i, j] = val; arr[l, i, j, k] = -val; setv(0, 1, 2, 3) setv(0, 2, 3, 1); setv(0, 3, 1, 2); return arr epsilon_array = mk_epsilon_array() def epsilon_tensor(i, j, k, l=3): """ epsilon_tensor(0, 1, 2, 3) == 1 """ return epsilon_array[i, j, k, l].item()
[docs] def rel_mod(x, size): """ Return ``x % size`` or ``x % size - size`` """ x = x % size assert x >= 0 if 2 * x >= size: return x - size else: return x
[docs] def rel_mod_sym(x, size): """ Return ``x % size`` or ``x % size - size`` or ``0`` """ x = x % size assert x >= 0 if 2 * x > size: return x - size elif 2 * x < size: return x else: assert 2 * x == size return 0
[docs] def rel_mod_arr(x, size): """ Return ``x % size`` or ``x % size - size`` where ``x`` and ``size`` are np.array of same shape """ # assert x.shape == size.shape ans = x % size assert np.all(ans >= 0) mask = 2 * ans >= size ans[mask] = (ans - size)[mask] return ans
[docs] def rel_mod_sym_arr(x, size): """ Return ``x % size`` or ``x % size - size`` or ``0`` where ``x`` and ``size`` are np.array of same shape """ # assert x.shape == size.shape ans = x % size assert np.all(ans >= 0) mask1 = 2 * ans > size mask2 = 2 * ans == size ans[mask1] = (ans - size)[mask1] ans[mask2] = 0 return ans
def c_sqr(x): return sum([ sqr(v) for v in x ]) def c_rel_mod(x, size): l = len(size) assert l == len(x) return [ rel_mod(x[i], size[i]) for i in range(l) ] def c_rel_mod_sqr(x, size): l = len(size) assert l == len(x) return sum([ sqr(rel_mod(x[i], size[i])) for i in range(l) ]) def phat_sqr(q, size): l = len(size) assert l == len(q) return 4 * sum([ sqr(math.sin(math.pi * (q[i] % size[i]) / size[i])) for i in range(l) ]) def get_r_sq(x_rel): """ get spatial distance square as int """ return sum([ x * x for x in x_rel[:3] ]) def get_r_limit(total_site): """ Return the limit for spatial ``r`` as float.\n :params total_site: must be Coordinate type """ return math.sqrt(sum([ (l / 2)**2 for l in total_site.to_list()[:3] ])) def mk_r_sq_list_3d(r_sq_limit): r_limit = int(math.sqrt(r_sq_limit)) r_sq_set = set() for x in range(0, r_limit + 1): for y in range(0, x + 1): for z in range(0, y + 1): r_sq = x**2 + y**2 + z**2 if r_sq > r_sq_limit: continue r_sq_set.add(r_sq) return sorted(list(r_sq_set))
[docs] def mk_r_sq_list(r_sq_limit, dimension='3D'): if dimension == '4D': # Lagrange's four-square theorem # https://en.wikipedia.org/wiki/Lagrange%27s_four-square_theorem return list(range(0, r_sq_limit)) elif dimension == '3D': return mk_r_sq_list_3d(r_sq_limit) else: raise Exception(f"mk_r_sq_list: dimension='{dimension}' not recognized.")
[docs] def mk_r_list(r_limit, *, r_all_limit=28.0, r_scaling_factor=5.0, dimension='3D'): """ Make a list of `r` values from `0` up to `r_limit`.\n Parameters ---------- r_limit: the limit for the generated `r` list. r_scaling_factor: After `r_all_limit`, include `r` with integer values divide `r_scaling_factor` r_all_limit: include all possible `r` values up to (include) this limit. dimension: '3D' or '4D' """ r_list = [ math.sqrt(r_sq) for r_sq in mk_r_sq_list(int(min(r_limit, r_all_limit)**2 + 0.5)) ] r_second_start = r_all_limit if r_list: r_second_start = min(r_second_start, r_list[-1]) r_second_start_idx = int(r_second_start * r_scaling_factor + 1.5) r_second_stop_idx = math.ceil(r_limit * r_scaling_factor + 1.5) for i in range(r_second_start_idx, r_second_stop_idx): r = i / r_scaling_factor r_list.append(r) return r_list
[docs] def mk_interp_tuple(x, x0, x1, x_idx): """ Returns `(x_idx_low, x_idx_high, coef_low, coef_high,)`\n `x_idx` corresponds to `x0` `x_idx + 1` corresponds to `x1` """ assert x0 <= x and x <= x1 x_idx_low = x_idx x_idx_high = x_idx_low + 1 x_interval = x1 - x0 coef_low = (x1 - x) / x_interval coef_high = (x - x0) / x_interval return (x_idx_low, x_idx_high, coef_low, coef_high,)
[docs] def mk_r_sq_interp_idx_coef_list(r_list): """ Return a list of tuples:\n ``r_sq_interp_idx_coef_list = [ (r_idx_low, r_idx_high, coef_low, coef_high,), ... ]`` where: ``r_sq_interp_idx_coef_list[r_sq] = (r_idx_low, r_idx_high, coef_low, coef_high,)`` `r_sq` ranges from `0` to `int(r_list[-1]**2 + 1.5)` """ r_list_len = len(r_list) assert r_list_len >= 2 assert r_list[0] == 0.0 r_sq_list = list(range(0, int(r_list[-1]**2 + 1.5))) r_idx = 0 r_sq_interp_idx_coef_list = [] for r_sq in r_sq_list: r = math.sqrt(r_sq) while True: if r_idx + 1 >= r_list_len: r_sq_interp_idx_coef_list.append((r_idx, r_idx, 1.0, 0.0,)) break r0 = r_list[r_idx] r1 = r_list[r_idx + 1] if r0 <= r and r < r1: r_sq_interp_idx_coef_list.append(mk_interp_tuple(r, r0, r1, r_idx)) break r_idx += 1 return r_sq_interp_idx_coef_list
@timer def check_log_json(script_file, json_results, *, check_eps=1e-5): """ json_results = [ (name, value, check_eps,), (name, value,), (name,), ... ] """ fname = get_fname() if 0 == get_id_node(): json_fn_name = os.path.splitext(script_file)[0] + ".log.json" qtouch(json_fn_name + ".new", json_dumps(json_results, indent=1)) if does_file_exist_qar(json_fn_name): json_results_load = json_loads(qcat(json_fn_name)) for i, (p, pl,) in enumerate(zip(json_results, json_results_load)): if len(p) != len(pl): displayln(-1, f"CHECK: {i} {p} load:{pl}") displayln(-1, f"CHECK: ERROR: JSON results length does not match.") continue if len(p) == 1: eps = check_eps epsl = check_eps v = 0 vl = 0 n, = p nl, = pl elif len(p) == 2: eps = check_eps epsl = check_eps n, v = p nl, vl = pl elif len(p) == 3: n, v, eps = p nl, vl, epsl = pl else: displayln(-1, f"CHECK: {i} {p} load:{pl}") displayln(-1, f"CHECK: ERROR: JSON results length not 2 or 3.") continue if n != nl: displayln(-1, f"CHECK: {i} {p} load:{pl}") displayln(-1, f"CHECK: ERROR: JSON results item does not match.") continue if eps != epsl: displayln(-1, f"CHECK: {i} {p} load:{pl}") displayln(-1, f"CHECK: ERROR: JSON results eps does not match.") continue actual_eps = 0.0 if (abs(v) + abs(vl)) > 0: actual_eps = 2 * abs(v - vl) / (abs(v) + abs(vl)) if actual_eps > eps: displayln(-1, f"CHECK: {i} '{n}' actual: {v} ; load: {vl} .") displayln(-1, f"CHECK: target eps: {eps} ; actual eps: {actual_eps} .") displayln(-1, f"CHECK: ERROR: JSON results value does not match.") elif actual_eps != 0.0: displayln(-1, f"INFO: {fname}: {i} '{n}'") displayln(-1, f"INFO: {fname}: target eps: {eps} ; actual eps: {actual_eps} .") if len(json_results) != len(json_results_load): displayln(-1, f"CHECK: len(json_results)={len(json_results)} load:{len(json_results_load)}") displayln(-1, f"CHECK: ERROR: JSON results len does not match.")