from .rng_state import *
from .timer import *
import math
import copy
import functools
import numpy as np
alpha_qed = 1.0 / 137.035999084
fminv_gev = 0.197326979 # hbar * c / (1e-15 m * 1e9 electron charge * 1 volt)
float_types = (float, np.float32, np.float64,)
complex_types = (complex, np.complex64, np.complex128,)
int_types = (int, np.int32, np.int64,)
try:
float_types = float_types + (np.float128,)
complex_types = complex_types + (np.complex256,)
except:
pass
real_types = float_types + int_types
number_types = real_types + complex_types
class use_kwargs:
"""
self.default_kwargs
self.keys
"""
def __init__(self, default_kwargs, keys = None):
self.default_kwargs = default_kwargs
self.keys = None
def __call__(self, func):
@functools.wraps(func)
def f(*args, **kwargs):
if "is_default_kwargs_applied" not in kwargs:
d = self.default_kwargs.copy()
d.update(kwargs)
kwargs = d
if self.keys is not None:
kwargs = { k: kwargs[k] for k in self.keys }
return func(*args, **kwargs)
return f
###
def interpolate_list(v, i):
"""
return approximately v[i]
"""
size = len(v)
i1 = math.floor(i)
assert i1 >= 0
i2 = i1 + 1
if i2 >= size:
return v[size - 1]
elif i1 < 0:
return v[0]
v1 = v[i1]
v2 = v[i2]
a1 = i2 - i
a2 = i - i1
return a1 * v1 + a2 * v2
def interpolate(v_arr, i_arr):
"""
return approximately v_arr[..., i_arr]
"""
vt = v_arr.transpose()
if isinstance(i_arr, real_types):
return interpolate_list(vt, i_arr).transpose()
else:
return np.array([ interpolate_list(vt, i) for i in i_arr ], v_arr.dtype).transpose()
def get_threshold_idx(arr, threshold):
"""
return x
interpolate(arr, x) = threshold
arr.shape == (len(arr),)
"""
i1 = 0
i2 = len(arr) - 1
v1 = arr[i1]
v2 = arr[i2]
if v1 >= v2:
i1, i2 = i2, i1
v1, v2 = v2, v1
while True:
assert v2 >= v1
if v1 <= threshold and threshold <= v2:
if i2 - i1 == 1:
d_v = v2 - v1
d_i = i2 - i1
i3 = i1 + (threshold - v1) / d_v * d_i
return i3
i3 = (i1 + i2) // 2
v3 = arr[i3]
if threshold <= v3:
i2 = i3
v2 = v3
continue
elif v3 <= threshold:
i1 = i3
v1 = v3
continue
else:
assert False
elif threshold <= v1:
return i1
elif v2 <= threshold:
return i2
else:
assert False
assert False
def partial_sum_list(x, *, is_half_last = False):
"""Modify in-place, preserve length"""
s = 0
for i, v in enumerate(x):
sp = s
s += v
if is_half_last:
x[i] = (s + sp) / 2
else:
x[i] = s
def partial_sum(x, *, is_half_last = False):
"""Modify in-place, preserve length"""
shape = x.shape
if len(shape) == 0:
return
elif len(shape) == 1:
partial_sum_list(x, is_half_last = is_half_last)
elif len(shape) == 2:
for v in x:
partial_sum_list(v, is_half_last = is_half_last)
else:
assert False
def check_zero(x):
if isinstance(x, real_types) and 0 == x:
return True
return False
def qnorm(x):
"""
qnorm(2) == 4
"""
if isinstance(x, np.ndarray):
return np.abs(np.vdot(x, x))
elif isinstance(x, real_types):
return x * x
elif isinstance(x, complex_types):
return x.real * x.real + x.imag * x.imag
elif isinstance(x, (list, tuple,)):
return sum([ qnorm(x_i) for x_i in x ])
else:
return x.qnorm()
assert False
class Data:
def __init__(self, val):
"""
# supported value types:
# numeric
# numpy.array
# q.LatData
# list
"""
if isinstance(val, Data):
self.val = val.val
assert not isinstance(self.val, Data)
else:
self.val = val
def __str__(self):
return f"Data({self.val})"
def get_val(self):
return self.val
def __copy__(self):
return Data(copy.copy(self.val))
def __deepcopy__(self, memo):
return Data(copy.deepcopy(self.val, memo))
def __add__(self, other):
if isinstance(other, Data):
if check_zero(self.val):
return other
elif check_zero(other.val):
return self
elif isinstance(self.val, list) and isinstance(other.val, list):
assert len(self.val) == len(other.val)
return Data([ v1 + v2 for v1, v2 in zip(self.val, other.val) ])
elif isinstance(self.val, list):
return Data([ v + other.val for v in self.val ])
elif isinstance(other.val, list):
return Data([ self.val + v for v in other.val ])
else:
return Data(self.val + other.val)
else:
return self + Data(other)
def __radd__(self, other):
if isinstance(other, Data):
assert False
return None
else:
return Data(other) + self
def __mul__(self, other):
if isinstance(other, Data):
if check_zero(self.val) or check_zero(other.val):
return Data(0)
elif isinstance(self.val, list) and isinstance(other.val, list):
return Data([ v1 * v2 for v1, v2 in zip(self.val, other.val) ])
elif isinstance(self.val, list):
return Data([ v * other.val for v in self.val ])
elif isinstance(other.val, list):
return Data([ self.val * v for v in other.val ])
return Data(self.val * other.val)
else:
return self * Data(other)
def __rmul__(self, other):
if isinstance(other, Data):
assert False
return None
else:
return Data(other) * self
def __neg__(self):
if check_zero(self.val):
return Data(0)
elif isinstance(self.val, list):
return Data([ -v for v in self.val ])
else:
return Data(-self.val)
def __pos__(self):
return self
def __sub__(self, other):
if isinstance(other, Data):
if check_zero(self.val):
return Data(-other.val)
elif check_zero(other.val):
return self
elif isinstance(self.val, list) and isinstance(other.val, list):
return Data([ v1 - v2 for v1, v2 in zip(self.val, other.val) ])
elif isinstance(self.val, list):
return Data([ v - other.val for v in self.val ])
elif isinstance(other.val, list):
return Data([ self.val - v for v in other.val ])
else:
return Data(self.val - other.val)
else:
return self - Data(other)
def __rsub__(self, other):
if isinstance(other, Data):
assert False
return None
else:
return Data(other) - self
def qnorm(self):
return qnorm(self.val)
def glb_sum(self):
from qlat.mpi import glb_sum
return Data(glb_sum(self.val))
###
def add_jk_idx(arr):
"""
arr: no jk index
return: add trivial jk index in the LAST axis
"""
return arr.reshape(arr.shape + (1,))
def jk_transpose(arr):
"""
arr: jk index is the 0th axis
return: jk index is the last axis
"""
shape = arr.shape
ndim = len(shape)
if ndim <= 1:
return arr
axes = list(range(1, ndim)) + [ 0, ]
return arr.transpose(axes)
def jk_transpose_back(arr):
"""
jk_transpose_back(jk_transpose(arr)) == arr
"""
shape = arr.shape
ndim = len(shape)
if ndim <= 1:
return arr
axes = [ ndim - 1, ] + list(range(0, ndim - 1))
return arr.transpose(axes)
def average(data_list):
n = len(data_list)
v = sum(data_list)
return 1/n * v
def average_ignore_nan(value_arr_list):
if len(value_arr_list) == 0:
return None
shape = value_arr_list[0].shape
dtype = value_arr_list[0].dtype
count_arr = np.zeros(shape, dtype=np.int64)
sum_arr = np.zeros(shape, dtype=dtype)
for v_arr in value_arr_list:
assert v_arr.shape == shape
assert v_arr.dtype == dtype
sel = ~np.isnan(v_arr)
count_arr[sel] += 1
sum_arr[sel] += v_arr[sel]
avg_arr = np.zeros(shape, dtype=dtype)
sel = count_arr > 0
avg_arr[sel] = sum_arr[sel] / count_arr[sel]
avg_arr[~sel] = np.nan
return avg_arr
def block_data(data_list, block_size, is_overlapping=True):
"""
return the list of block averages
the blocks may overlap if is_overlapping == True
"""
if block_size == 1:
return data_list
assert block_size >= 1
size = len(data_list)
if block_size >= size:
return [ average(data_list), ]
blocks = []
start = 0
stop = block_size
while stop <= size:
b = average(data_list[start:stop])
blocks.append(b)
if is_overlapping:
start += 1
stop += 1
else:
start += block_size
stop += block_size
return blocks
def avg_err(data_list, eps=1, *, block_size=1):
avg = average(data_list)
blocks = block_data(data_list, block_size)
diff_sqr = average([ fsqr(d - avg) for d in blocks ])
fac = abs(eps) * math.sqrt(block_size / (len(data_list) - 1))
err = fac * fsqrt(diff_sqr)
return (avg, err,)
def jackknife(data_list, eps=1):
"""
Return jk[i] = avg - \\frac{eps}{N} (v[i] - avg)
normal jackknife uses eps=1, scale the fluctuation by eps
"""
is_np_arr = isinstance(data_list, np.ndarray)
data_list_real = [ d for d in data_list if d is not None ]
n = len(data_list_real)
fac = eps / n
avg = average(data_list_real)
jks = [ avg, ]
for data in data_list:
if data is None:
jks.append(avg)
else:
jks.append(avg - fac * (data - avg))
if is_np_arr:
jks = np.array(jks, dtype=data_list.dtype)
return jks
def fsqr(data):
if isinstance(data, real_types):
return data * data
elif isinstance(data, complex_types):
r = data.real
i = data.imag
return complex(r * r, i * i)
elif isinstance(data, Data):
return Data(fsqr(data.val))
else:
# Assuming np.ndarray like object
if data.dtype in real_types:
return np.square(data)
elif data.dtype in complex_types:
return np.square(data.real) + 1j * np.square(data.imag)
else:
raise Exception(f"fsqr data={data} type not supported")
def fsqrt(data):
if isinstance(data, real_types):
return math.sqrt(data)
elif isinstance(data, complex_types):
r = data.real
i = data.imag
return complex(math.sqrt(r), math.sqrt(i))
elif isinstance(data, Data):
return Data(fsqrt(data.val))
else:
# Assuming np.ndarray like object
if data.dtype in real_types:
return np.sqrt(data)
elif data.dtype in complex_types:
return np.sqrt(data.real) + 1j * np.sqrt(data.imag)
else:
raise Exception(f"fsqr data={data} type not supported")
def jk_avg(jk_list):
is_np_arr = isinstance(jk_list, np.ndarray)
val = jk_list[0]
if is_np_arr and val.size == 1:
return val.item()
else:
return val
def jk_err(jk_list, eps=1, *, block_size=1):
"""
Return \\frac{1}{eps} \\sqrt{ \\sum_{i=1}^N (jk[i] - jk_avg)^2 } when block_size=1
Note: len(jk_list) = N + 1
Same eps as the eps used in the 'jackknife' function
"""
is_np_arr = isinstance(jk_list, np.ndarray)
avg = jk_avg(jk_list)
blocks = block_data(jk_list[1:], block_size)
diff_sqr = average([ fsqr(jk - avg) for jk in blocks ])
fac = math.sqrt(block_size * (len(jk_list) - 1)) / abs(eps)
val = fac * fsqrt(diff_sqr)
if is_np_arr and val.size == 1:
return val.item()
else:
return val
def jk_avg_err(jk_list, eps=1, *, block_size=1):
return jk_avg(jk_list), jk_err(jk_list, eps, block_size=block_size)
def merge_jk_idx(*jk_idx_list):
for jk_idx in jk_idx_list:
assert jk_idx[0] == "avg"
return [ "avg", ] + [ idx for jk_idx in jk_idx_list for idx in jk_idx[1:] ]
def rejk_list(jk_list, jk_idx_list, all_jk_idx):
"""
super jackknife
"""
assert jk_idx_list[0] == "avg"
assert all_jk_idx[0] == "avg"
assert len(jk_idx_list) == len(jk_list)
assert len(jk_idx_list) <= len(all_jk_idx)
is_np_arr = isinstance(jk_idx_list, np.ndarray)
jk_avg = jk_list[0]
size_new = len(all_jk_idx)
i_new = 0
jk_list_new = []
for i, idx in enumerate(jk_idx_list):
while all_jk_idx[i_new] != idx:
jk_list_new.append(jk_avg)
i_new += 1
assert i_new < size_new
jk_list_new.append(jk_list[i])
i_new += 1
while i_new < size_new:
jk_list_new.append(jk_avg)
i_new += 1
assert i_new == size_new
assert size_new == len(jk_list_new)
if is_np_arr:
jk_list_new = np.array(jk_list_new, dtype=jk_list.dtype)
return jk_list_new
# ----------
def mk_jk_blocking_func(block_size=1, block_size_dict=None, all_jk_idx_set=None):
"""
Recommend to use `jk_blocking_func_default` instead.
#
block_size_for_this_job_tag = block_size_dict.get(job_tag, block_size)
"""
if block_size_dict is None:
block_size_dict = dict()
def jk_blocking_func(jk_idx):
if all_jk_idx_set is not None:
all_jk_idx_set.add(jk_idx)
if isinstance(jk_idx, int_types):
traj = jk_idx
return traj // block_size
elif isinstance(jk_idx, tuple) and len(jk_idx) == 2 and isinstance(jk_idx[1], int_types):
job_tag, traj = jk_idx
assert isinstance(job_tag, str)
assert isinstance(traj, int_types)
block_size_for_this_job_tag = block_size_dict.get(job_tag, block_size)
assert isinstance(block_size_for_this_job_tag, int_types)
return (job_tag, traj // block_size_for_this_job_tag,)
else:
return jk_idx
return jk_blocking_func
@timer
def rjk_jk_list(jk_list, jk_idx_list, n_rand_sample, rng_state, jk_blocking_func=None, is_normalizing_rand_sample=True, is_use_old_rand_alg=False):
"""
return rjk_list
len(rjk_list) == 1 + n_rand_sample
distribution of rjk_list should be similar as the distribution of avg
r_{i,j} ~ N(0, 1)
avg = jk_avg(jk_list)
len(jk_list) = n + 1
rjk_list[i] = avg + \\sum_{j=1}^{n} r_{i,j} (jk_list[j] - avg)
#
jk_blocking_func(jk_idx) => blocked jk_idx
"""
assert jk_idx_list[0] == "avg"
assert isinstance(n_rand_sample, int_types)
assert n_rand_sample >= 0
assert isinstance(rng_state, RngState)
is_np_arr = isinstance(jk_idx_list, np.ndarray)
rs = rng_state
n = len(jk_list) - 1
if jk_blocking_func is None:
blocked_jk_idx_list = jk_idx_list
else:
blocked_jk_idx_list = [ jk_blocking_func(idx) for idx in jk_idx_list[:] ]
assert len(blocked_jk_idx_list[1:]) == n
r_arr = np.empty((n_rand_sample, n,), dtype=np.float64)
if is_use_old_rand_alg:
assert not is_normalizing_rand_sample
for i in range(n_rand_sample):
rsi = rs.split(str(i))
r = [ rsi.split(str(idx)).g_rand_gen() for idx in blocked_jk_idx_list[1:] ]
for j in range(n):
r_arr[i, j] = r[j]
else:
r_arr_dict = dict()
for jk_idx in blocked_jk_idx_list[1:]:
jk_idx_str = str(jk_idx)
if jk_idx_str in r_arr_dict:
continue
rsi = rs.split(str(jk_idx))
garr = rsi.g_rand_arr(n_rand_sample)
if is_normalizing_rand_sample:
garr_qnorm = qnorm(garr) # garr_qnorm \approx n_rand_sample
garr = garr * np.sqrt(n_rand_sample / garr_qnorm)
assert abs(qnorm(garr) / n_rand_sample - 1) < 1e-8
r_arr_dict[jk_idx_str] = garr
for j, jk_idx in enumerate(blocked_jk_idx_list[1:]):
jk_idx_str = str(jk_idx)
r_arr[:, j] = r_arr_dict[jk_idx_str]
avg = jk_avg(jk_list)
if is_np_arr:
jk_arr = jk_list
jk_diff = jk_arr[1:] - avg
rjk_arr = np.empty((1 + n_rand_sample, *avg.shape,), dtype=jk_arr.dtype)
rjk_arr[:] = avg
for j in range(n):
for i in range(n_rand_sample):
rjk_arr[i + 1] += r_arr[i, j] * jk_diff[j]
return rjk_arr
else:
rjk_list = [ avg, ]
jk_diff = [ jk_list[j] - avg for j in range(1, n + 1) ]
for i in range(n_rand_sample):
rjk_list.append(avg + sum([ r_arr[i, j] * jk_diff[j] for j in range(n) ]))
return rjk_list
@timer
def rjk_mk_jk_val(rs_tag, val, err, n_rand_sample, rng_state, is_normalizing_rand_sample=True):
"""
return rjk_list
n = n_rand_sample
len(rjk_list) == 1 + n
rjk_list[i] = val + err * r[i] for i in 1..n
where r[i] ~ N(0, 1)
"""
assert n_rand_sample >= 0
assert isinstance(rng_state, RngState)
assert isinstance(val, real_types)
assert isinstance(err, real_types)
rs = rng_state.split(str(rs_tag))
rjk_arr = np.zeros((n_rand_sample + 1,), dtype=np.float64)
rjk_arr[0] = val
r_arr = rs.g_rand_arr((n_rand_sample,))
if is_normalizing_rand_sample:
r_arr_qnorm = qnorm(r_arr)
r_arr = r_arr * np.sqrt(n_rand_sample / r_arr_qnorm)
assert abs(qnorm(r_arr) / n_rand_sample - 1) < 1e-8
rjk_arr[1:] = val + r_arr * err
return rjk_arr
def rjackknife(data_list, jk_idx_list, n_rand_sample, rng_state, *, eps=1):
jk_list = jackknife(data_list, eps)
return rjk_jk_list(jk_list, jk_idx_list, n_rand_sample, rng_state)
def rjk_avg(rjk_list):
return jk_avg(rjk_list)
def rjk_err(rjk_list, eps=1):
"""Return \\frac{1}{eps} \\sqrt{ \\frac{1}{N} \\sum_{i=1}^N (jk[i] - jk_avg)^2 }
Note: len(jk_list) = N + 1
Same eps as the eps used in the 'jackknife' function"""
n = len(rjk_list) - 1
return jk_err(rjk_list, abs(eps) * np.sqrt(n))
def rjk_avg_err(rjk_list, eps=1):
return rjk_avg(rjk_list), rjk_err(rjk_list, eps)
# ----------
default_g_jk_kwargs = dict()
default_g_jk_kwargs["jk_type"] = "super" # choices: "rjk", "super"
default_g_jk_kwargs["eps"] = 1
# for jk_type = "super"
default_g_jk_kwargs["all_jk_idx"] = None
default_g_jk_kwargs["get_all_jk_idx"] = None
# for jk_type = "rjk"
default_g_jk_kwargs["n_rand_sample"] = 1024
default_g_jk_kwargs["rng_state"] = RngState("rejk")
default_g_jk_kwargs["is_normalizing_rand_sample"] = True
default_g_jk_kwargs["is_use_old_rand_alg"] = False # only need to reproduce old results (need is_normalizing_rand_sample == False)
# these parameters are used in jk_blocking_func_default
default_g_jk_kwargs["block_size"] = 1
default_g_jk_kwargs["block_size_dict"] = {
"job_tag": 1,
}
default_g_jk_kwargs["all_jk_idx_set"] = set()
@use_kwargs(default_g_jk_kwargs)
def get_jk_state(
*,
jk_type,
eps,
n_rand_sample,
is_normalizing_rand_sample,
is_use_old_rand_alg,
block_size,
block_size_dict,
**_kwargs,
):
"""
Currently only useful if we set
#
q.default_g_jk_kwargs["jk_type"] = "rjk" # this not yet the default
#
and
#
q.default_g_jk_kwargs["jk_blocking_func"] = jk_blocking_func_default
#
"""
assert jk_type == "rjk"
return (
jk_type,
eps,
n_rand_sample,
is_normalizing_rand_sample,
is_use_old_rand_alg,
block_size,
block_size_dict,
)
@use_kwargs(default_g_jk_kwargs)
def jk_blocking_func_default(
jk_idx,
*,
block_size,
block_size_dict,
all_jk_idx_set,
**_kwargs,
):
"""
block_size_for_this_job_tag = block_size_dict.get(job_tag, block_size)
"""
block_size = default_g_jk_kwargs["block_size"]
block_size_dict = default_g_jk_kwargs["block_size_dict"]
all_jk_idx_set = default_g_jk_kwargs["all_jk_idx_set"]
if block_size_dict is None:
block_size_dict = dict()
if all_jk_idx_set is not None:
all_jk_idx_set.add(jk_idx)
if isinstance(jk_idx, int_types):
traj = jk_idx
return traj // block_size
elif isinstance(jk_idx, tuple) and len(jk_idx) == 2 and isinstance(jk_idx[1], int_types):
job_tag, traj = jk_idx
assert isinstance(job_tag, str)
assert isinstance(traj, int_types)
block_size_for_this_job_tag = block_size_dict.get(job_tag, block_size)
assert isinstance(block_size_for_this_job_tag, int_types)
return (job_tag, traj // block_size_for_this_job_tag,)
else:
return jk_idx
assert False
default_g_jk_kwargs["jk_blocking_func"] = jk_blocking_func_default # jk_blocking_func(jk_idx) => blocked jk_idx
[docs]
@use_kwargs(default_g_jk_kwargs)
@timer
def g_jk(data_list, *, eps, **_kwargs):
"""
Perform initial Jackknife for the original data set.\n
"""
return jackknife(data_list, eps)
[docs]
@use_kwargs(default_g_jk_kwargs)
@timer
def g_rejk(jk_list, jk_idx_list, *,
jk_type,
all_jk_idx,
get_all_jk_idx,
n_rand_sample,
rng_state,
jk_blocking_func,
is_normalizing_rand_sample,
is_use_old_rand_alg,
**_kwargs,):
"""
Perform (randomized) Super-Jackknife for the Jackknife data set.
:jk_list: usually the Jackknife data set obtained with ``g_jk(data_list)``.
:jk_idx_list: should be list of indices that names the ``jk_list``.
:jk_type: [ "rjk", "super", ]``\n
:returns: (randomized) Super-Jackknife data set.
Note that::\n
len(jk_list) == len(jk_idx_list)
jk_idx_list[0] == "avg"
Example
"""
if jk_type == "super":
if jk_blocking_func is not None:
displayln_info(f"g_rejk: jk_type={jk_type} does not support jk_blocking_func={jk_blocking_func}")
if all_jk_idx is None:
assert get_all_jk_idx is not None
all_jk_idx = get_all_jk_idx()
return rejk_list(jk_list, jk_idx_list, all_jk_idx)
elif jk_type == "rjk":
return rjk_jk_list(jk_list, jk_idx_list, n_rand_sample, rng_state, jk_blocking_func, is_normalizing_rand_sample, is_use_old_rand_alg)
else:
assert False
return None
[docs]
@use_kwargs(default_g_jk_kwargs)
@timer
def g_mk_jk_val(rs_tag, val, err, *, jk_type, n_rand_sample, rng_state, is_normalizing_rand_sample, **_kwargs):
"""
Create a jackknife sample with random numbers based on central value ``val`` and error ``err``.\n
Need::\n
default_g_jk_kwargs["jk_type"] = "rjk"
default_g_jk_kwargs["n_rand_sample"] = n_rand_sample
# e.g. n_rand_sample = 1024
default_g_jk_kwargs["rng_state"] = rng_state
# e.g. rng_state = RngState("rejk")
default_g_jk_kwargs["is_normalizing_rand_sample"] = is_normalizing_rand_sample
# e.g. is_normalizing_rand_sample = True
"""
assert jk_type == "rjk"
return rjk_mk_jk_val(rs_tag, val, err, n_rand_sample, rng_state, is_normalizing_rand_sample)
[docs]
def g_jk_avg(jk_list):
"""
Return ``avg`` of the ``jk_list``.
"""
if isinstance(jk_list, number_types):
return jk_list
return jk_avg(jk_list)
[docs]
@use_kwargs(default_g_jk_kwargs)
def g_jk_err(jk_list, *, eps, jk_type, **_kwargs):
"""
Return ``err`` of the ``jk_list``.
"""
if isinstance(jk_list, number_types):
return 0
if jk_type == "super":
return jk_err(jk_list, eps)
elif jk_type == "rjk":
return rjk_err(jk_list, eps)
else:
assert False
return None
[docs]
@timer
def g_jk_avg_err(jk_list, **kwargs):
"""
Return ``(avg, err,)`` of the ``jk_list``.
"""
return g_jk_avg(jk_list), g_jk_err(jk_list, **kwargs)
@timer
def g_jk_avg_err_arr(jk_list, **kwargs):
avg, err = g_jk_avg_err(jk_list, **kwargs)
avg_err_arr = np.stack([ avg, err, ])
avg_err_arr = np.moveaxis(avg_err_arr, 0, -1).copy()
return avg_err_arr
[docs]
@use_kwargs(default_g_jk_kwargs)
def g_jk_size(**kwargs):
"""
Return number of samples for the (randomized) Super-Jackknife data set.
"""
jk_type = kwargs["jk_type"]
all_jk_idx = kwargs["all_jk_idx"]
get_all_jk_idx = kwargs["get_all_jk_idx"]
n_rand_sample = kwargs["n_rand_sample"]
# jk_type in [ "rjk", "super", ]
if jk_type == "super":
if all_jk_idx is None:
assert get_all_jk_idx is not None
all_jk_idx = get_all_jk_idx()
return len(all_jk_idx)
elif jk_type == "rjk":
return 1 + n_rand_sample
else:
assert False
return None
[docs]
@use_kwargs(default_g_jk_kwargs)
def g_jk_blocking_func(idx, *, jk_blocking_func, **_kwargs):
"""
Return ``jk_blocking_func(idx)``.
"""
if jk_blocking_func is None:
return idx
else:
return jk_blocking_func(idx)
class JkKwargs:
"""
Example:
#
with q.JkKwargs(n_rand_sample=1024, block_size=10, block_size_dict={ "48I": 20, }):
...
#
"""
def __init__(self, **kwargs):
self.new_kwargs = kwargs
self.original = dict()
def __enter__(self):
for key, value in self.new_kwargs.items():
self.original[key] = default_g_jk_kwargs[key]
default_g_jk_kwargs[key] = self.new_kwargs[key]
def __exit__(self, exc_type, exc_value, traceback):
assert exc_type is None
assert exc_value is None
assert traceback is None
for key, value in self.new_kwargs.items():
default_g_jk_kwargs[key] = self.original[key]
self.new_kwargs = None
self.original = None
# ----