import qlat as q
import gc
import os
import pprint
from . import rbc_ukqcd_params as rup
from .rbc_ukqcd_params import get_param
def get_fermion_params(job_tag, inv_type, inv_acc):
return rup.dict_params[job_tag]["fermion_params"][inv_type][inv_acc]
def get_ls_from_fermion_params(fermion_params):
if "omega" in fermion_params:
return len(fermion_params["omega"])
else:
return fermion_params["Ls"]
def get_lanc_params(job_tag, inv_type, inv_acc=0):
return rup.dict_params[job_tag]["lanc_params"][inv_type][inv_acc]
def get_clanc_params(job_tag, inv_type, inv_acc=0):
return rup.dict_params[job_tag]["clanc_params"][inv_type][inv_acc]
@q.timer_verbose
def mk_eig(gf, job_tag, inv_type, inv_acc=0):
import qlat_gpt as qg
import gpt as g
qtimer = q.Timer(f"py:mk_eig({job_tag},{inv_type},{inv_acc})", True)
qtimer.start()
gpt_gf = g.convert(qg.gpt_from_qlat(gf), g.single)
parity = g.odd
params = get_lanc_params(job_tag, inv_type, inv_acc)
q.displayln_info(f"mk_eig: job_tag={job_tag} inv_type={inv_type} inv_acc={inv_acc}")
q.displayln_info(f"mk_eig: params=\n{pprint.pformat(params)}")
fermion_params = params["fermion_params"]
if "omega" in fermion_params:
qm = g.qcd.fermion.zmobius(gpt_gf, fermion_params)
else:
qm = g.qcd.fermion.mobius(gpt_gf, fermion_params)
w = g.qcd.fermion.preconditioner.eo2_ne(parity=parity)(qm)
def make_src(rng):
src = g.vspincolor(qm.F_grid_eo)
# src[:] = g.vspincolor([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]])
rng.cnormal(src)
src.checkerboard(parity)
return src
pit = g.algorithms.eigen.power_iteration(**params["pit_params"])
pit_ev, _, _ = pit(w.Mpc, make_src(g.random("lanc")));
q.displayln_info(f"mk_eig: pit_ev={pit_ev}")
#
cheby = g.algorithms.polynomial.chebyshev(params["cheby_params"])
irl = g.algorithms.eigen.irl(params["irl_params"])
evec, ev = irl(cheby(w.Mpc), make_src(g.random("lanc")))
evals, eps2 = g.algorithms.eigen.evals(w.Mpc, evec, real=True)
g.mem_report()
#
qtimer.stop()
return evec, evals
@q.timer_verbose
def mk_ceig(gf, job_tag, inv_type, inv_acc=0):
import qlat_gpt as qg
import gpt as g
qtimer = q.Timer(f"py:mk_ceig({job_tag},{inv_type},{inv_acc})", True)
qtimer.start()
gpt_gf = g.convert(qg.gpt_from_qlat(gf), g.single)
parity = g.odd
params = get_lanc_params(job_tag, inv_type, inv_acc)
cparams = get_clanc_params(job_tag, inv_type, inv_acc)
assert cparams["nbasis"] <= params["irl_params"]["Nstop"]
fermion_params = params["fermion_params"]
q.displayln_info(f"mk_ceig: job_tag={job_tag} inv_type={inv_type} inv_acc={inv_acc}")
q.displayln_info(f"mk_ceig: params=\n{pprint.pformat(params)}")
if "omega" in fermion_params:
qm = g.qcd.fermion.zmobius(gpt_gf, fermion_params)
else:
qm = g.qcd.fermion.mobius(gpt_gf, fermion_params)
w = g.qcd.fermion.preconditioner.eo2_ne(parity=parity)(qm)
def make_src(rng):
src = g.vspincolor(qm.F_grid_eo)
# src[:] = g.vspincolor([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]])
rng.cnormal(src)
src.checkerboard(parity)
return src
pit = g.algorithms.eigen.power_iteration(**params["pit_params"])
pit_ev, _, _ = pit(w.Mpc, make_src(g.random("lanc")));
q.displayln_info(f"mk_ceig: pit_ev={pit_ev}")
#
cheby = g.algorithms.polynomial.chebyshev(params["cheby_params"])
irl = g.algorithms.eigen.irl(params["irl_params"])
evec, ev = irl(cheby(w.Mpc), make_src(g.random("lanc")))
evals, eps2 = g.algorithms.eigen.evals(w.Mpc, evec, real=True)
g.mem_report()
#
inv = g.algorithms.inverter
#
q.displayln_info(f"mk_ceig: cparams=\n{pprint.pformat(cparams)}")
#
grid_coarse = g.block.grid(qm.F_grid_eo, [ get_ls_from_fermion_params(fermion_params) ] + cparams["block"])
nbasis = cparams["nbasis"]
basis = evec[0:nbasis]
b = g.block.map(grid_coarse, basis)
for i in range(2):
b.orthonormalize()
del evec
gc.collect()
#
ccheby = g.algorithms.polynomial.chebyshev(cparams["cheby_params"])
cop = b.coarse_operator(ccheby(w.Mpc))
#
cstart = g.vcomplex(grid_coarse, nbasis)
cstart[:] = g.vcomplex([1] * nbasis, nbasis)
eps2 = g.norm2(cop * cstart - b.project * ccheby(w.Mpc) * b.promote * cstart) / g.norm2(cstart)
g.message(f"Test coarse-grid promote/project cycle: {eps2}")
cirl = g.algorithms.eigen.irl(cparams["irl_params"])
cevec, cev = cirl(cop, cstart)
#
smoother = inv.cg(cparams["smoother_params"])(w.Mpc)
smoothed_evals = []
tmpf = g.lattice(basis[0])
for i, cv in enumerate(cevec):
tmpf @= smoother * b.promote * cv
evals = g.algorithms.eigen.evals(
w.Mpc, [tmpf], calculate_eps2=False, real=True
)
smoothed_evals = smoothed_evals + evals
g.mem_report()
#
qtimer.stop()
return basis, cevec, smoothed_evals
@q.timer_verbose
def get_smoothed_evals(basis, cevec, gf, job_tag, inv_type, inv_acc=0):
import qlat_gpt as qg
import gpt as g
gpt_gf = g.convert(qg.gpt_from_qlat(gf), g.single)
parity = g.odd
params = get_lanc_params(job_tag, inv_type, inv_acc)
cparams = get_clanc_params(job_tag, inv_type, inv_acc)
assert cparams["nbasis"] <= params["irl_params"]["Nstop"]
fermion_params = params["fermion_params"]
if "omega" in fermion_params:
qm = g.qcd.fermion.zmobius(gpt_gf, fermion_params)
else:
qm = g.qcd.fermion.mobius(gpt_gf, fermion_params)
w = g.qcd.fermion.preconditioner.eo2_ne(parity=parity)(qm)
inv = g.algorithms.inverter
grid_coarse = g.block.grid(qm.F_grid_eo, [ get_ls_from_fermion_params(fermion_params) ] + cparams["block"])
b = g.block.map(grid_coarse, basis)
smoother = inv.cg(cparams["smoother_params"])(w.Mpc)
smoothed_evals = []
tmpf = g.lattice(basis[0])
for i, cv in enumerate(cevec):
tmpf @= smoother * b.promote * cv
evals = g.algorithms.eigen.evals(
w.Mpc, [tmpf], calculate_eps2=False, real=True
)
smoothed_evals = smoothed_evals + evals
return smoothed_evals
@q.timer_verbose
def save_ceig(path, eig, job_tag, inv_type=0, inv_acc=0):
import gpt as g
if path is None:
return
save_params = get_clanc_params(job_tag, inv_type, inv_acc)["save_params"]
nsingle = save_params["nsingle"]
mpi = save_params["mpi"]
fmt = g.format.cevec({"nsingle": nsingle, "mpi": [ 1 ] + mpi, "max_read_blocks": 8})
q.mk_file_dirs_info(path)
g.save(path, eig, fmt);
@q.timer_verbose
def load_eig_lazy(path, job_tag, inv_type=0, inv_acc=0):
"""
return ``None'' or a function ``load_eig''
``load_eig()'' return the ``eig''
"""
import qlat_gpt as qg
import gpt as g
if path is None:
q.displayln_info(f"load_eig_lazy: path is '{path}'")
return None
if not q.does_file_exist_qar_sync_node(os.path.join(path, "metadata.txt")):
q.displayln_info(f"load_eig_lazy: '{path}' has not metadata.")
return None
if not q.does_file_exist_qar_sync_node(os.path.join(path, "eigen-values.txt")):
q.displayln_info(f"load_eig_lazy: '{path}' has not eigen-values.")
return None
if not q.does_file_exist_qar_sync_node(os.path.join(path, "00/0000000000.compressed")):
q.displayln_info(f"load_eig_lazy: '{path}' has not data file '00/0000000000.compressed'.")
return None
#
@q.timer_verbose
def load_eig():
g.mem_report()
total_site = q.Coordinate(get_param(job_tag, "total_site"))
fermion_params = get_fermion_params(job_tag, inv_type, inv_acc)
grids = qg.get_fgrid(total_site, fermion_params)
eig = g.load(path, grids=grids)
g.mem_report()
return eig
#
return q.lazy_call(load_eig)
def get_cg_mp_maxiter(job_tag, inv_type, inv_acc):
maxiter = get_param(job_tag, f"cg_params-{inv_type}-{inv_acc}", "maxiter")
if maxiter is not None:
return maxiter
if job_tag[:5] == "test-":
maxiter = 50
elif inv_acc == 2:
maxiter = 500
elif inv_type == 0:
maxiter = 200
elif inv_type in [ 1, 2, ]:
maxiter = 300
else:
maxiter = 100
raise Exception("get_cg_mp_maxiter")
return maxiter
[docs]
@q.timer_verbose
def mk_gpt_inverter(gf, job_tag, inv_type, inv_acc, *,
gt=None,
mpi_split=None,
n_grouped=1,
eig=None,
eps=1e-8,
qtimer=True):
import qlat_gpt as qg
import gpt as g
if mpi_split is None:
mpi_split = g.default.get_ivec("--mpi_split", None, 4)
if mpi_split is not None:
n_grouped = g.default.get_int("--grouped", 4)
q.displayln_info(f"mk_gpt_inverter: job_tag={job_tag} inv_type={inv_type} inv_acc={inv_acc} mpi_split={mpi_split} n_grouped={n_grouped}")
gpt_gf = qg.gpt_from_qlat(gf)
pc = g.qcd.fermion.preconditioner
if inv_type in [ 0, 1, 2, ]:
params = get_fermion_params(job_tag, inv_type, inv_acc)
if eig is not None:
# may need madwf
params0 = get_fermion_params(job_tag, inv_type, inv_acc=0)
is_madwf = get_ls_from_fermion_params(params) != get_ls_from_fermion_params(params0)
if is_madwf and inv_type == 1:
# do not use madwf for strange even when eig is available (do not use eig for exact solve)
is_madwf = False
eig = None
else:
is_madwf = False
q.displayln_info(f"mk_gpt_inverter: set qm params={params}")
if "omega" in params:
qm = g.qcd.fermion.zmobius(gpt_gf, params)
else:
qm = g.qcd.fermion.mobius(gpt_gf, params)
inv = g.algorithms.inverter
cg_mp = inv.cg({"eps": eps, "maxiter": get_cg_mp_maxiter(job_tag, inv_type, inv_acc)})
cg_pv_f = inv.cg({"eps": eps, "maxiter": get_param(job_tag, f"cg_params-{inv_type}-{inv_acc}", "pv_maxiter", default=150)})
if mpi_split is None or mpi_split == False:
cg_split = cg_mp
n_grouped = 1
mpi_split = None
else:
cg_split = inv.split(cg_mp, mpi_split=mpi_split)
cg_pv_f = inv.split(cg_pv_f, mpi_split=mpi_split)
q.displayln_info(f"mk_gpt_inverter: mpi_split={mpi_split} n_grouped={n_grouped}")
if eig is not None:
cg_defl = inv.coarse_deflate(eig[1], eig[0], eig[2])
cg = inv.sequence(cg_defl, cg_split)
else:
cg = cg_split
if "omega" in params and eig is None:
pc_ne = pc.eo2_kappa_ne()
q.displayln_info(f"mk_gpt_inverter: pc.eo2_kappa_ne() does not support split_cg")
cg = cg_mp
elif job_tag in "64I":
pc_ne = pc.eo1_ne(parity=g.odd)
else:
pc_ne = pc.eo2_ne()
if inv_type in [ 0, 1, 2, ]:
slv_5d = inv.preconditioned(pc_ne, cg)
else:
raise Exception("mk_gpt_inverter")
q.displayln_info(f"mk_gpt_inverter: deal with is_madwf={is_madwf}")
if is_madwf:
gpt_gf_f = g.convert(gpt_gf, g.single)
if "omega" in params0:
qm0 = g.qcd.fermion.zmobius(gpt_gf_f, params0)
else:
qm0 = g.qcd.fermion.mobius(gpt_gf_f, params0)
slv_5d_pv_f = inv.preconditioned(pc.eo2_ne(), cg_pv_f)
slv_5d = pc.mixed_dwf(slv_5d, slv_5d_pv_f, qm0)
if inv_acc == 0:
maxcycle = get_param(job_tag, f"cg_params-{inv_type}-{inv_acc}", "maxcycle", default=1)
elif inv_acc == 1:
maxcycle = get_param(job_tag, f"cg_params-{inv_type}-{inv_acc}", "maxcycle", default=2)
elif inv_acc == 2:
maxcycle = get_param(job_tag, f"cg_params-{inv_type}-{inv_acc}", "maxcycle", default=200)
else:
raise Exception("mk_gpt_inverter")
q.sync_node()
q.displayln_info(f"mk_gpt_inverter: eps={eps} maxcycle={maxcycle}")
slv_qm = qm.propagator(
inv.defect_correcting(
inv.mixed_precision(
slv_5d, g.single, g.double),
eps=eps, maxiter=maxcycle)).grouped(n_grouped)
q.displayln_info(f"mk_gpt_inverter: make inv_qm")
if qtimer is True:
qtimer = q.Timer(f"py:inv({job_tag},{inv_type},{inv_acc})", True)
elif qtimer is False:
qtimer = q.TimerNone()
inv_qm = qg.InverterGPT(inverter=slv_qm, qtimer=qtimer)
else:
raise Exception("mk_gpt_inverter")
if gt is None:
return inv_qm
else:
return q.InverterGaugeTransform(inverter=inv_qm, gt=gt)
[docs]
@q.timer_verbose
def mk_qlat_inverter(gf, job_tag, inv_type, inv_acc, *, gt=None):
qtimer = q.Timer(f"py:qinv({job_tag},{inv_type},{inv_acc})", True)
if job_tag in ["24D", "32D"]:
if inv_type == 0:
fa = q.FermionAction(mass=0.00107, m5=1.8, ls=24, mobius_scale=4.0)
inv = q.InverterDomainWall(gf=gf, fa=fa, qtimer=qtimer)
inv.set_stop_rsd(1e-8)
inv.set_max_num_iter(200)
if inv_acc == 0:
maxiter = 1
elif inv_acc == 1:
maxiter = 2
elif inv_acc == 2:
maxiter = 50
else:
raise Exception("mk_qlat_inverter")
inv.set_max_mixed_precision_cycle(maxiter)
elif inv_type == 1:
fa = q.FermionAction(mass=0.0850, m5=1.8, ls=24, mobius_scale=4.0)
inv = q.InverterDomainWall(gf=gf, fa=fa, qtimer=qtimer)
inv.set_stop_rsd(1e-8)
inv.set_max_num_iter(300)
if inv_acc == 0:
maxiter = 1
elif inv_acc == 1:
maxiter = 2
elif inv_acc == 2:
maxiter = 50
else:
raise Exception("mk_qlat_inverter")
inv.set_max_mixed_precision_cycle(maxiter)
else:
raise Exception("mk_qlat_inverter")
else:
raise Exception("mk_qlat_inverter")
if gt is None:
return inv
else:
return q.InverterGaugeTransform(inverter=inv, gt=gt)
[docs]
def mk_inverter(*args, **kwargs):
return mk_gpt_inverter(*args, **kwargs)
@q.timer
def get_inv(gf, job_tag, inv_type, inv_acc, *, gt=None, mpi_split=None, n_grouped=1, eig=None, eps=1e-8, qtimer=True):
tag = f"rbc_ukqcd.get_inv gf={id(gf)} {job_tag} inv_type={inv_type} inv_acc={inv_acc} gt={id(gt)} mpi_split={mpi_split} n_grouped={n_grouped} eig={id(eig)} eps={eps} qtimer={id(qtimer)}"
if tag in q.cache_inv:
return q.cache_inv[tag]["inv"]
inv = mk_inverter(gf, job_tag, inv_type, inv_acc,
gt=gt,
mpi_split=mpi_split,
n_grouped=n_grouped,
eig=eig,
eps=eps,
qtimer=qtimer)
q.cache_inv[tag] = {
"inv": inv,
"gf": gf,
"gt": gt,
"eig": eig,
"qtimer": qtimer,
}
return inv