Source code for qlat_scripts.v1.jobs

import qlat as q
from . import rbc_ukqcd_params as rup
from .rbc_ukqcd_params import set_param, get_param

import numpy as np

import functools
import os
from pprint import pformat

save_path_default = "results"

load_path_list = [ "results", ]

[docs] def get_save_path(fn): return os.path.join(save_path_default, fn)
[docs] def get_load_path(*fns): def get(fn): if fn is None: return None elif isinstance(fn, (tuple, list)): for f in fn: p = get(f) if p is not None: return p else: for path in load_path_list: p = os.path.join(path, fn) if q.does_file_exist_qar_sync_node(p): return p return None return get(fns)
# ---------- @q.timer_verbose def check_job(job_tag, traj, fns_produce, fns_need): """ return False if config is finished or unavailable """ is_job_done = True for fn in fns_produce: if get_load_path(fn) is None: q.displayln_info(f"check_job: {job_tag} {traj} to do as '{fn}' does not exist.") is_job_done = False break if is_job_done: return False # is_job_avail = True for fn in fns_need: if get_load_path(fn) is None: q.displayln_info(f"check_job: {job_tag} {traj} unavailable as '{fn}' does not exist.") is_job_avail = False break if not is_job_avail: return False # q.check_stop() q.check_time_limit() # assert not is_job_done and is_job_avail # return True # ---------- @q.timer_verbose def run_params(job_tag): q.displayln_info(pformat(get_param(job_tag))) for v in get_param(job_tag).items(): q.displayln_info(f"CHECK: {v}") fn_pickle = get_save_path(f"{job_tag}/params.pickle") fn_txt = get_save_path(f"{job_tag}/params.txt") if not q.does_file_exist_qar_sync_node(fn_pickle): q.save_pickle_obj(get_param(job_tag), fn_pickle, is_sync_node=True) if not q.does_file_exist_qar_sync_node(fn_txt): q.qtouch_info(fn_txt, pformat(get_param(job_tag))) # ---------- @q.timer_verbose def run_gf(job_tag, traj): path_gf = get_load_path( f"{job_tag}/configs/ckpoint_lat.{traj}", f"{job_tag}/configs/ckpoint_lat.IEEE64BIG.{traj}", ) if path_gf is None: if job_tag[:5] == "test-": if not q.obtain_lock(f"locks/{job_tag}-{traj}-gauge_field"): return None total_site = q.Coordinate(get_param(job_tag, "total_site")) gf = rup.mk_sample_gauge_field_v3(job_tag, f"{traj}") path_gf = get_save_path(f"{job_tag}/configs/ckpoint_lat.{traj}") gf.save(path_gf) q.release_lock() else: @q.timer_verbose def load_gf(): assert False return load_gf get_gf = rup.load_config_lazy(job_tag, path_gf) return get_gf @q.timer_verbose def run_gt(job_tag, traj, get_gf): tfn = f"{job_tag}/gauge-transform/traj-{traj}.field" path_gt = get_load_path(tfn) if path_gt is None: if None in [ get_gf, ]: return None elif q.obtain_lock(f"locks/{job_tag}-{traj}-gauge_fix_coulomb"): gf = get_gf() import qlat_gpt as qg gt = qg.gauge_fix_coulomb(gf) gt.save_cps(get_save_path(f"{job_tag}/gauge-transform/traj-{traj}.gfix")) gt.save_double(get_save_path(tfn)) q.release_lock() else: return None @q.timer_verbose def load_gt(): path_gt = get_load_path(tfn) assert path_gt is not None gt = q.GaugeTransform() gt.load_double(path_gt) # ADJUST ME # import qlat_gpt as qg # qg.check_gauge_fix_coulomb(get_gf(), gt) # return gt get_gt = q.lazy_call(load_gt) return get_gt # ---------- @q.timer def mk_rand_wall_src_info_n_exact(job_tag, traj, inv_type): params = rup.dict_params[job_tag] n_exact = params["n_exact_wsrc"] rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_wall_src_info") inv_acc_s = 1 inv_acc_e = 2 total_site = q.Coordinate(get_param(job_tag, "total_site")) t_size = total_site[3] wi_s = [ [ t, inv_type, inv_acc_s, ] for t in range(t_size) ] mask = [ False, ] * t_size for i in range(n_exact): t_e = rs.rand_gen() % t_size mask[t_e] = True wi_e = [] for t in range(t_size): if mask[t]: wi_e.append([ t, inv_type, inv_acc_e, ]) wi = wi_e + wi_s for i in range(len(wi)): wi[i] = [ i, ] + wi[i] return wi @q.timer def mk_rand_wall_src_info_prob(job_tag, traj, inv_type): params = rup.dict_params[job_tag] prob = params["prob_exact_wsrc"] rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_wall_src_info_prob") inv_acc_s = 1 inv_acc_e = 2 total_site = q.Coordinate(get_param(job_tag, "total_site")) t_size = total_site[3] wi_s = [ [ t, inv_type, inv_acc_s, ] for t in range(t_size) ] wi_e = [] for t in range(t_size): if rs.u_rand_gen() < prob: wi_e.append([ t, inv_type, inv_acc_e, ]) wi = wi_e + wi_s for i in range(len(wi)): wi[i] = [ i, ] + wi[i] return wi def get_prob_exact_wsrc(job_tag): params = rup.dict_params[job_tag] if "prob_exact_wsrc" in params: return params["prob_exact_wsrc"] n_exact = params["n_exact_wsrc"] total_site = q.Coordinate(get_param(job_tag, "total_site")) return 1 - (1 - 1 / total_site[3])**n_exact @q.timer def mk_rand_wall_src_info(job_tag, traj, inv_type): """ wi is a list of [ idx tslice inv_type inv_acc ] """ params = rup.dict_params[job_tag] if "prob_exact_wsrc" not in params: return mk_rand_wall_src_info_n_exact(job_tag, traj, inv_type) return mk_rand_wall_src_info_prob(job_tag, traj, inv_type) @q.timer def save_wall_src_info(wi, path): """ wi is a list of [ idx tslice inv_type inv_acc ] """ if 0 != q.get_id_node(): return None lines = [ " ".join([ f"{v:5d}" for v in l ]) for l in wi ] content = "\n".join(lines + [ "", ]) q.qtouch(path, content) @q.timer def load_wall_src_info(path): assert path is not None """ wi is a list of [ idx tslice inv_type inv_acc ] """ dt = q.qload_datatable_sync_node(path, True) t = [ list(map(int, l)) for l in dt ] wi = [ [ l[0], l[1], l[2], l[3], ] for l in t ] return wi @q.timer_verbose def run_wi(job_tag, traj): tfn_l = f"{job_tag}/wall-src-info-light/traj-{traj}.txt" tfn_s = f"{job_tag}/wall-src-info-strange/traj-{traj}.txt" path_light = get_load_path(tfn_l) if path_light is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-wi"): wi_light = mk_rand_wall_src_info(job_tag, traj, inv_type=0) save_wall_src_info(wi_light, get_save_path(tfn_l)); q.release_lock() else: return None path_strange = get_load_path(tfn_s) if path_strange is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-wi"): wi_strange = mk_rand_wall_src_info(job_tag, traj, inv_type=1) save_wall_src_info(wi_strange, get_save_path(tfn_s)); q.release_lock() else: return None @q.timer_verbose def load(): wi_light = load_wall_src_info(get_load_path(tfn_l)) wi_strange = load_wall_src_info(get_load_path(tfn_s)) return wi_light + wi_strange return q.lazy_call(load) # ---------- def get_n_points_psel(job_tag): assert job_tag in rup.dict_params total_site = q.Coordinate(get_param(job_tag, "total_site")) total_volume = total_site.volume() psel_rate = get_param(job_tag, "field-selection-psel-rate") if psel_rate is not None: n_points = round(total_volume * psel_rate) return n_points n_points = get_param(job_tag, "n_points_psel") assert n_points is not None return n_points @q.timer def mk_rand_psel(job_tag, traj): rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_psel") total_site = q.Coordinate(get_param(job_tag, "total_site")) n_points = get_n_points_psel(job_tag) psel = q.PointsSelection() psel.set_rand(total_site, n_points, rs) return psel @q.timer_verbose def run_psel(job_tag, traj): tfn = f"{job_tag}/point-selection/traj-{traj}.txt" path_psel = get_load_path(tfn) if path_psel is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-psel"): psel = mk_rand_psel(job_tag, traj) psel.save(get_save_path(tfn)) q.release_lock() else: return None # @q.timer_verbose def load_psel(): path_psel = get_load_path(tfn) assert path_psel is not None total_site = q.Coordinate(get_param(job_tag, "total_site")) psel = q.PointsSelection() psel.load(path_psel, q.Geometry(total_site)) assert psel.n_points == get_n_points_psel(job_tag) return psel return q.lazy_call(load_psel) # ---------- def get_n_points_pi(job_tag, traj, inv_type, inv_acc): assert job_tag in rup.dict_params assert "n_points" in rup.dict_params[job_tag] return rup.dict_params[job_tag]["n_points"][inv_type][inv_acc] @q.timer def mk_rand_point_src_info(job_tag, traj, psel): # pi is a list of [ idx xg inv_type inv_acc ] rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_point_src_info") xg_list = psel.xg_arr().tolist() assert len(xg_list) == get_n_points_pi(job_tag, traj, 0, 0) g_pi = [ [] for _ in xg_list ] for inv_type in [ 0, 1, ]: for inv_acc in [ 0, 1, 2, ]: for i in range(get_n_points_pi(job_tag, traj, inv_type, inv_acc)): g_pi[i].append([ xg_list[i], inv_type, inv_acc ]) pi = [] for g in g_pi: pi += g for i in range(len(pi)): pi[i] = [ i, ] + pi[i] return pi @q.timer def save_point_src_info(pi, path): # pi is a list of [ idx xg inv_type inv_acc ] if 0 != q.get_id_node(): return None def mk_line(l): [ idx, xg, inv_type, inv_acc ] = l return f"{idx:5d} {xg[0]:3d} {xg[1]:3d} {xg[2]:3d} {xg[3]:3d} {inv_type:3d} {inv_acc:3d}" lines = list(map(mk_line, pi)) content = "\n".join([ f"{len(lines)}" ] + lines + [ "" ]) q.qtouch(path, content) @q.timer def load_point_src_info(path): # pi is a list of [ idx xg inv_type inv_acc ] dt = q.qload_datatable_sync_node(path, True) t = [ list(map(int, l)) for l in dt ][1:] pi = [ [ l[0], l[1:5], l[5], l[6], ] for l in t ] return pi @q.timer_verbose def run_pi(job_tag, traj, get_psel): tfn = f"{job_tag}/point-src-info/traj-{traj}.txt" path = get_load_path(tfn) if path is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-pi"): pi = mk_rand_point_src_info(job_tag, traj, get_psel()) save_point_src_info(pi, get_save_path(tfn)); q.release_lock() else: return None @q.timer_verbose def load(): path = get_load_path(tfn) assert path is not None pi = load_point_src_info(path) return pi return q.lazy_call(load) # ---------- @q.timer def load_point_distribution(job_tag): """ return point_distribution where point_distribution[xg_rel] = probability of the relative coordinate of a point relative to a selected point equals to ``xg_rel``. xg_rel = (x, y, z, t,) x >= y >= z >= 0 and t >= 0 n_points = get_n_points_psel(job_tag) """ n_points = get_n_points_psel(job_tag) tfn = f"{job_tag}/point-distribution/point-distribution.txt" path = get_load_path(tfn) if path is None: return None dt = q.qload_datatable_sync_node(path, True) point_distribution = dict() for l in dt: x, y, z, t, prob = l x = int(x) y = int(y) z = int(z) t = int(t) point_distribution[(x, y, z, t,)] = prob * (n_points - 1) / n_points point_distribution[(0, 0, 0, 0,)] = 1.0 / n_points return point_distribution def classify_rel_coordinate(xg_rel_arrary, total_site_array): """ xg_rel_arrary = np.array(xg_rel) total_site_array = np.array(total_site) """ total_site_half = total_site_array // 2 xg_rel_arrary = xg_rel_arrary % total_site_array xg_rel_abs = total_site_half - abs(xg_rel_arrary - total_site_half) x, y, z, t = xg_rel_abs x, y, z = sorted([x, y, z]) return (x, y, z, t,) def get_point_xrel_prob(xg_rel_arrary, total_site_array, point_distribution, n_points): """ xg_rel_arrary = np.array(xg_rel) total_site_array = np.array(total_site) point_distribution = load_point_distribution(job_tag) n_points = get_n_points_psel(job_tag) """ if point_distribution is None: if np.all(xg_rel_arrary == 0): return 1.0 / n_points else: total_volume = np.prod(total_site_array) return (n_points - 1) / n_points / (total_volume - 1) xg_rel = classify_rel_coordinate(xg_rel_arrary, total_site_array) prob = point_distribution[xg_rel] return prob # ---------- @q.timer def mk_rand_fsel(job_tag, traj, n_per_tslice): rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_fsel") total_site = q.Coordinate(get_param(job_tag, "total_site")) fsel = q.FieldSelection() fsel.set_rand(total_site, n_per_tslice, rs) return fsel @q.timer_verbose def run_fsel(job_tag, traj): tfn = f"{job_tag}/field-selection/traj-{traj}.field" path_fsel = get_load_path(tfn) total_site = q.Coordinate(get_param(job_tag, "total_site")) fsel_rate = get_param(job_tag, "field-selection-fsel-rate", default=1/16) n_per_tslice = round(total_site[0] * total_site[1] * total_site[2] * fsel_rate) if path_fsel is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-fsel"): fsel = mk_rand_fsel(job_tag, traj, n_per_tslice) fsel.save(get_save_path(tfn)) q.release_lock() return lambda : fsel else: return None @q.timer_verbose def load_fsel(): path_fsel = get_load_path(tfn) assert path_fsel is not None fsel = q.FieldSelection() total_size = fsel.load(path_fsel) assert total_size > 0 return fsel return q.lazy_call(load_fsel) # ---------- @q.timer def mk_fselc(fsel, psel): fname = q.get_fname() fselc = fsel.copy() if not fsel.is_containing(psel): q.displayln_info(f"WARNING: {fname}: fsel does not containing psel.") fselc.add_psel(psel) return fselc @q.timer_verbose def run_fselc(job_tag, traj, get_fsel, get_psel): if get_fsel is None: return None if get_psel is None: return None @q.timer_verbose def get(): fselc = mk_fselc(get_fsel(), get_psel()) return fselc return q.lazy_call(get) # ---------- @q.timer def mk_rand_fsel_smear(job_tag, traj, n_per_tslice_smear): rs = q.RngState(f"seed {job_tag} {traj}").split("mk_rand_fsel_smear") total_site = q.Coordinate(get_param(job_tag, "total_site")) fsel = q.FieldSelection() fsel.set_rand(total_site, n_per_tslice_smear, rs) return fsel @q.timer_verbose def run_psel_smear(job_tag, traj): """ return lambda : psel_smear psel_smear should randomly select same number of point on each tslice """ tfn = f"{job_tag}/point-selection-smear/traj-{traj}.txt" path_psel = get_load_path(tfn) total_site = q.Coordinate(get_param(job_tag, "total_site")) if path_psel is None: if q.obtain_lock(f"locks/{job_tag}-{traj}-psel-smear"): n_per_tslice_smear = rup.dict_params[job_tag]["n_per_tslice_smear"] fsel = mk_rand_fsel_smear(job_tag, traj, n_per_tslice_smear) psel = fsel.to_psel() psel.save(get_save_path(tfn)) q.release_lock() else: return None # @q.timer_verbose def load_psel(): path_psel = get_load_path(tfn) assert path_psel is not None total_site = q.Coordinate(get_param(job_tag, "total_site")) psel = q.PointsSelection() psel.load(path_psel, q.Geometry(total_site)) return psel return q.lazy_call(load_psel) # ---------- @q.timer def run_gf_ape(job_tag, get_gf): if get_gf is None: return None coef = rup.dict_params[job_tag]["gf_ape_smear_coef"] step = rup.dict_params[job_tag]["gf_ape_smear_step"] # @q.timer_verbose def run(): gf = get_gf() gf_ape = q.gf_spatial_ape_smear(gf, coef, step) gf_ape = q.mk_left_expanded_gauge_field(gf_ape) return gf_ape return q.lazy_call(run) @q.timer def run_gf_hyp(job_tag, get_gf): if get_gf is None: return None step = get_param(job_tag, "gf_hyp_smear_step") @q.timer_verbose def run(): gf_hyp = get_gf() for i in range(step): gf_hyp = q.gf_hyp_smear(gf_hyp, 0.75, 0.6, 0.3) return gf_hyp return q.lazy_call(run) # ---------- @q.timer def compute_eig(gf, job_tag, inv_type=0, inv_acc=0, *, path=None): """ return a function ``get_eig'' ``get_eig()'' return the ``eig'' """ from . import rbc_ukqcd as ru load_eig = ru.load_eig_lazy(get_load_path(path), job_tag) if load_eig is not None: return load_eig import gpt as g g.mem_report() # evec, evals = ru.mk_eig(gf, job_tag, inv_type, inv_acc) basis, cevec, smoothed_evals = ru.mk_ceig(gf, job_tag, inv_type, inv_acc) eig = [ basis, cevec, smoothed_evals, ] ru.save_ceig(get_save_path(path + ".partial"), eig, job_tag, inv_type, inv_acc); q.qrename_info(get_save_path(path + ".partial"), get_save_path(path)) test_eig(gf, eig, job_tag, inv_type) g.mem_report() def get_eig(): return eig return get_eig @q.timer def test_eig(gf, eig, job_tag, inv_type): from . import rbc_ukqcd as ru geo = gf.geo src = q.FermionField4d(geo) src.set_rand(q.RngState("test_eig:src.set_rand")) q.displayln_info(f"src norm {src.qnorm():.10E}") sol_ref = ru.get_inv(gf, job_tag, inv_type, inv_acc=2, eig=eig, eps=1e-10, mpi_split=False, qtimer=False) * src q.displayln_info(f"sol_ref norm {sol_ref.qnorm():.10E} with eig") for inv_acc in [ 0, 1, 2, ]: sol = ru.get_inv(gf, job_tag, inv_type, inv_acc, eig=eig, mpi_split=False, qtimer=False) * src sol -= sol_ref q.displayln_info(f"sol diff norm {sol.qnorm()} inv_acc={inv_acc} with eig") if inv_acc in [ 0, 1, ]: sol = ru.get_inv(gf, job_tag, inv_type, inv_acc, mpi_split=False, qtimer=False) * src sol -= sol_ref q.displayln_info(f"sol diff norm {sol.qnorm()} inv_acc={inv_acc} without eig") @q.timer_verbose def run_eig(job_tag, traj, get_gf): if None in [ get_gf, ]: return None from . import rbc_ukqcd as ru get_eig = ru.load_eig_lazy(get_load_path(f"{job_tag}/eig/traj-{traj}"), job_tag) if get_eig is None and get_gf is not None: if q.obtain_lock(f"locks/{job_tag}-{traj}-run-eig"): get_eig = compute_eig(get_gf(), job_tag, inv_type=0, path=f"{job_tag}/eig/traj-{traj}") q.release_lock() return get_eig else: return None else: return get_eig @q.timer_verbose def run_eig_strange(job_tag, traj, get_gf): """ if failed, return None if no parameter, return lambda : None """ if None in [ get_gf, ]: return None if get_param(job_tag, "clanc_params", 1) is None: fn = f"{job_tag}/eig-strange/traj-{traj}/no-eig-parameters.txt" if get_load_path(fn) is None: q.qtouch_info(get_save_path(fn)) return lambda : None from . import rbc_ukqcd as ru get_eig = ru.load_eig_lazy(get_load_path(f"{job_tag}/eig-strange/traj-{traj}"), job_tag) if get_eig is None and get_gf is not None: if q.obtain_lock(f"locks/{job_tag}-{traj}-run-eig-strange"): get_eig = compute_eig(get_gf(), job_tag, inv_type=1, path=f"{job_tag}/eig-strange/traj-{traj}") q.release_lock() return get_eig else: return None else: return get_eig # ---------- @functools.lru_cache(maxsize=None) def get_r_list(job_tag): total_site = q.Coordinate(get_param(job_tag, "total_site")) r_limit = q.get_r_limit(total_site) r_list = q.mk_r_list(r_limit, r_all_limit=28.0, r_scaling_factor=5.0) # r_list = q.mk_r_list(r_limit, r_all_limit=0.0, r_scaling_factor=5.0) # old choice return r_list @functools.lru_cache(maxsize=None) def get_r_sq_interp_idx_coef_list(job_tag): """ Return [ (r_idx_low, r_idx_high, coef_low, coef_high,), ... ] indexed by r_sq """ r_list = get_r_list(job_tag) return q.mk_r_sq_interp_idx_coef_list(r_list) @q.timer_verbose def run_r_list(job_tag): fn = f"{job_tag}/r_list/r_list.lat" r_list = get_r_list(job_tag) ld = q.mk_lat_data([ [ "r_idx", len(r_list), ], ]) ld.from_numpy(np.array(r_list)) if get_load_path(fn) is not None: ld_load = q.load_lat_data(get_load_path(fn)) assert ld.is_match(ld_load) ld_diff = ld - ld_load assert ld_diff.qnorm() < 1e-20 return ld.save(get_save_path(fn)) # ----------